Transcription factor Phox2 upregulates expression of norepinephrine transporter and dopamine β-hydroxylase in adult rat brains.

نویسندگان

  • Y Fan
  • J Huang
  • M Duffourc
  • R L Kao
  • G A Ordway
  • R Huang
  • M-Y Zhu
چکیده

Degeneration of the noradrenergic locus coeruleus (LC) in aging and neurodegenerative diseases is well documented. Slowing or reversing this effect may have therapeutic implications. Phox2a and Phox2b are homeodomain transcriptional factors that function as determinants of the noradrenergic phenotype during embryogenesis. In the present study, recombinant lentiviral eGFP-Phox2a and -Phox2b (vPhox2a and vPhox2b) were constructed to study the effects of Phox2a/2b over-expression on dopamine β-hydroxylase (DBH) and norepinephrine transporter (NET) levels in central noradrenergic neurons. Microinjection of vPhox2 into the LC of adult rats significantly increased Phox2 mRNA levels in the LC region. Over-expression of either Phox2a or Phox2b in the LC was paralleled by significant increases in mRNA and protein levels of DBH and NET in the LC. Similar increases in DBH and NET protein levels were observed in the hippocampus following vPhox2 microinjection. In the frontal cortex, only NET protein levels were significantly increased by vPhox2 microinjection. Over-expression of Phox2 genes resulted in a significant increase in BrdU-positive cells in the hippocampal dentate gyrus. The present study demonstrates an upregulatory effect of Phox2a and Phox2b on the expression of DBH and NET in noradrenergic neurons of rat brains, an effect not previously shown in adult animals. Phox2 genes may play an important role in maintaining the function of the noradrenergic neurons after birth, and regulation of Phox2 gene expression may have therapeutic utility in aging or disorders involving degeneration of noradrenergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system.

Many transcription factors, and most prominently among them, homeodomain proteins, are expressed in specific groups of cells in the developing nervous system in patterns that suggest their involvement in neural fate determination. How various aspects of neural identity are controlled by such transcription factors, or sets of them, is still mostly unknown. It has been shown previously that Phox2...

متن کامل

A proximal promoter domain containing a homeodomain-binding core motif interacts with multiple transcription factors, including HoxA5 and Phox2 proteins, and critically regulates cell type-specific transcription of the human norepinephrine transporter gene.

Expression of the norepinephrine transporter (NET), which mediates the reuptake of norepinephrine into presynaptic nerve terminals, is restricted to noradrenergic (NA) neurons. We have demonstrated previously that the 9.0 kb upstream sequences and the first intron residing in the 5' untranslated area are critical for high-level and NA cell-specific transcription. Here, using transient transfect...

متن کامل

The expression of dopamine β-hydroxylase, tyrosine hydroxylase, and Phox2 transcription factors in sympathetic neurons: evidence for common regulation during noradrenergic induction and diverging regulation later in development

During differentiation of sympathetic neurons in chick embryos, tyrosine hydroxylase (TH) and dopamine b-hydroxylase (DBH) mRNAs become detectable during the same developmental period and are both induced by BMP 4. Later during sympathetic ganglion development, DBH is detectable in TH-positive and -negative cells. Moreover, BMPs reduce DBH mRNA in cultures of sympathetic neurons while leaving T...

متن کامل

MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activati...

متن کامل

Differential regulation of catecholamine synthesis and transport in rat adrenal medulla by fluoxetine treatment.

We have recently shown that chronic fluoxetine treatment acted significantly increasing plasma norepinephrine and epinephrine concentrations both in control and chronically stressed adult male rats. However, possible effects of fluoxetine on catecholamine synthesis and re-uptake in adrenal medulla have been largely unknown. In the present study the effects of chronic fluoxetine treatment on tyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 192  شماره 

صفحات  -

تاریخ انتشار 2011